Uvod Pojam, vrste i svrha vizualizacije 1.1. Vizuelno mišljenje 1.2. Vizuelna komunikacija 1.3. Vizuelna pismenost 1.3.1. Različiti aspekti vizuelne pismenosti 1.3.1.1. Piktogrami i piktografici 1.4. Karta, mapa, dijagram, grafik, infografik 1.5. Podatak, informacija, znanje, razumevanje 1.5.1. Tabelarni i grafički prikaz podataka 1.5.2. Deskriptivna i inferencijalna statistika 1.6. Naučna vizualizacija i vizualizacija informacija 1.7. Vizualizacija kao eksplorativna tehnika 1.8. Izbor prikladne tehnike vizualizacije 1.8.1. Nivoi merenja varijabli 1.8.2. Hijerarhija vizuelnih kodova 1.8.3. Čitljivost grafikona 1.9. Prvi test znanja Vizualizacija distribucija verovatnoća 2.1. Pojam verovatnoće 2.2. Populacija i uzorak 2.2.1. Tehnike uzorkovanja 2.3. Pojam nasumičnosti ili slučajnosti 2.4. Pojam varijabilnosti 2.5. Osnovne tehnike sažimanja podataka 2.5.1. Tabele frekvencija i tabele kontingencije 2.5.2. Mere grupisanja ili centralne tendencije 2.5.2.1. Aritmetička sredina, medijana i mod 2.5.2.2. Još neke vrste prosečnih vrednosti 2.5.3. Mere raspršenja ili varijabilnosti 2.5.3.1. Vizuelna procena i poređenje varijabilnosti 2.5.3.2. Varijansa i standardna devijacija 2.5.3.3. Pojam matematičke funkcije 2.5.3.4. Interkvartilni raspon 2.6. Karakteristike i važnost normalne distribucije 2.6.1. Centralna granična teorema 2.6.2. Funkcije mase i gustine verovatnoće 2.6.3. Standardizacija sirovih rezultata 2.6.4. Površina ispod normalne krive 2.6.5. Standardna greška aritmetičke sredine 2.6.6. Skjunis i kurtozis 2.7. Još neke važne statističke distribucije 2.7.1. Studentova t distribucija 2.7.2. Hi-kvadrat distribucija 2.7.3. Fišer-Snedekorova F distribucija 2.8. Stepeni slobode 2.9. Test-statistici, p vrednosti i nivoi značajnosti 2.9.1. Jednostrano testiranje razlika 2.10. Drugi test znanja Vizualizacija razlika i povezanosti između varijabli 3.1. Testiranje (ne)tačnosti nul-hipoteza 3.2. T-test za jedan uzorak 3.3. T-test za dva uzorka 3.3.1. Uslovi za primenu t-testa 3.4. Neparametrijske alternative t-testu za dva uzorka 3.4.1. Vold-Volfovicov test nizova 3.4.2. Kolmogorov-Smirnovljev test za dva uzorka 3.4.3. Men-Vitnijev test sume rangova 3.5. Hi-kvadrat test 3.5.1. Hi-kvadrat kao test nezavisnosti 3.5.2. Pojam veličine efekta 3.5.3. Hi-kvadrat kao test stepena poklapanja (distribucija) 3.5.4. Uslovi za primenu hi-kvadrat testa 3.6. Pirsonov produkt-moment koeficijent korelacije 3.6.1. Regresiona jednačina i regresiona prava 3.6.1.1. Smisao koeficijenta b i konstante a u regresionoj analizi 3.6.2. Standardna greška procene 3.6.3. Interpretacija koeficijenta korelacije 3.6.4. Uslovi za primenu Pirsonovog r 3.6.5. Korelacija i uzročnost 3.7. Koeficijenti korelacije za rangirane podatke 3.8. T-test za zavisne uzorke 3.9. Neparametrijske alternative t-testu za zavisne uzorke 3.10. Značajnost razlika uparenih podataka nominalnog nivoa 3.10.1. Maknimarov test 3.10.2. Koenova kapa 3.10.3. Testovi marginalne homogenosti za politomne varijable 3.11. Treći test znanja Završne napomene Literatura
Literatura
Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.
Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39(2), 505–510.
Agresti, A. (2002). Categorical Data Analysis. https://doi.org/10.1007/978-3-642-04898-2_161
Amit, E., Hoeflin, C., Hamzah, N., & Fedorenko, E. (2017). An asymmetrical relationship between verbal and visual thinking: Converging evidence from behavior and fMRI. NeuroImage, 152, 619–627. https://doi.org/10.1016/j.neuroimage.2017.03.029
Anscombe, F. J. (1973). Graphs in Statistical Analysis. The American Statistician, 27(1), 17–21. https://doi.org/10.1080/00031305.1973.10478966
APA. (2010). Publication Manual of the American Psychological Association, 6th Edition. Washington, DC: APA.
Banse, R., Messer, M., & Fischer, I. (2015). Predicting aggressive behavior with the aggressiveness-IAT. Aggressive Behavior, 41(1), 65–83. https://doi.org/10.1002/ab.21574
Bauer, M. I., & Johnson-Laird, P. N. (1993). How Diagrams Can Improve Reasoning. Psychological Science, 4(6), 372–378. https://doi.org/10.1111/j.1467-9280.1993.tb00584.x
Bennet, J. H. (Ed.). (1990). Statistical inference and analysis: Selected correspondence of RA Fisher. Oxford: Clarendon Press.
Berg, R. V., Cornelissen, F. W., & Roerdink, J. B. T. M. (2008). Perceptual dependencies in information visualization assessed by complex visual search. ACM Transactions on Applied Perception, 4(4), Article 22.
Bertin, J. (1983). Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press.
Börner, K., Maltese, A., Balliet, R. N., & Heimlich, J. (2016). Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Information Visualization, 15(3), 198–213. https://doi.org/10.1177/1473871615594652
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X
Cairo, A. (2013). The Functional Art: An introduction to information graphics and visualization. Berkeley: New Riders.
Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann.
Chalmers, M. (1993). Using a landscape metaphor to represent a corpus of documents. Proceedings of the European Conference on Spatial Information Theory, Elba, September 1993, 377–390.
Chen, C. (2006). Information visualization: Beyond the horizon. London: Springer.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210. https://doi.org/10.1007/BF01320076
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554.
Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates.
Cole, C., Mandelblatt, B., & Stevenson, J. (2002). Visualizing a high recall search strategy output for undergraduates in an exploration stage of researching a term paper. Information Processing & Management, 38(1), 37–54.
Čolović, P., Smederevac, S., & Mitrović, D. (2014). Velikih pet plus dva: Validacija skraćene verzije. Primenjena psihologija, 7(3–1), 227–254. https://doi.org/10.19090/pp.2014.3-1.227-254
Cope, B., & Kalantzis, M. (2009). “Multiliteracies”: New Literacies, New Learning. Pedagogies: An International Journal, 4(3), 164–195. https://doi.org/10.1080/15544800903076044
Dale, E., & Chall, J. S. (1949). The Concept of Readability. Elementary English, 26(1), 19–26. Retrieved from JSTOR.
Dhand, N. K., & Khatkar, M. S. (2014). Statulator: An online statistical calculator. Sample Size Calculator for Comparing Two Independent Means. Retrieved July 29, 2019, from http://statulator.com/SampleSize/ss2M.html
Dowse, R., & Ehlers, M. S. (2001). The evaluation of pharmaceutical pictograms in a low-literate South African population. Patient Education and Counseling, 45(2), 87–99. https://doi.org/10.1016/S0738-3991(00)00197-X
Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing.
Fischer, H. (2011). A history of the central limit theorem: From classical to modern probability theory (H. Fischer, Ed.). https://doi.org/10.1007/978-0-387-87857-7_2
Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.2307/2340521
Fisher, R. A. (1925). Applications of “Student’s” distribution. Metron, 5(3), 90–104.
Friendly, M., & Denis. (2001). Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization. Retrieved February 27, 2018, from http://datavis.ca/milestones/
Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.
Galton, F. (1886). Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246–263. https://doi.org/10.2307/2841583
Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing (pp. 127–143). Hillsdale, NJ: Lawrence Erlbaum and Associates.
Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606. https://doi.org/10.1016/j.socec.2004.09.033
Guilford, J. P. (1978). Fundamental statistics in psychology and education. New York: McGraw-Hill.
Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers. Methods of Psychological Research, 7(1), 1–20.
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. https://doi.org/10.1017/S0140525X0999152X
Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied Statistics for the Behavioral Sciences. Boston: Houghton Mifflin.
Horn, R. E. (1999). Information design: Emergence of a new profession. In R. E. Jacobson, Information design (pp. 15–33). Cambridge, MA: MIT Press.
Howell, D. C. (2012). Statistical Methods for Psychology. Belmont: Wadsworth, Cengage Learning.
Hurlbert, A., & Ling, Y. (2012). Understanding colour perception and preference. In J. Best (Ed.), Colour Design (pp. 129–157). https://doi.org/10.1533/9780857095534.1.129
Iaccino, J. F. (2014). Left brain – right brain differences: Inquiries, evidence, and new approaches. New York: Psychology Press.
IBM. (2016). IBM SPSS Statistics 24 Algorithms. Retrieved from ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/24.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
Kaltenbach, H.-M. (2012). A Concise Guide to Statistics. Retrieved from https://www.springer.com/la/book/9783642235016
Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.
Kievit, R., Frankenhuis, W. E., Waldorp, L., & Borsboom, D. (2013). Simpson’s paradox in psychological science: A practical guide. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00513
Knapp, M. L., Hall, J. A., & Horgan, T. G. (2013). Nonverbal Communication in Human Interaction. Boston: Wadsworth Cengage Learning.
Knapp, T. R. (1990). Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nursing Research, 39(2), 121–123.
Kodžopeljić, J., Smederevac, S., Mitrović, D., Ćolović, P., & Pajić, D. (2019). Velikih pet plus dva – verzija za decu: Primena i interpretacija. Beograd: Centar za primenjenu psihologiju.
Koshman, S. (2006). Visualization-based information retrieval on the web. Library & Information Science Research, 28(2), 192–207.
Krider, R. E., Raghubir, P., & Krishna, A. (2001). Pizzas: π or Square? Psychophysical Biases in Area Comparisons. Marketing Science, 20(4), 405–425. https://doi.org/10.1287/mksc.20.4.405.9756
Krstić, D. (1991). Psihološki rečnik. Beograd: Savremena administracija.
Lakoff, G., & Núñez, R. E. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics Into Being. Retrieved from https://www.maa.org/press/maa-reviews/where-mathematics-comes-from-how-the-embodied-mind-brings-mathematics-into-being
Landers, R. N., & Lounsbury, J. W. (2006). An investigation of Big Five and narrow personality traits in relation to Internet usage. Computers in Human Behavior, 22(2), 283–293. https://doi.org/10.1016/j.chb.2004.06.001
Lindell, A. K., & Kidd, E. (2011). Why right-brain teaching is half-witted: A critique of the misapplication of neuroscience to education. Mind, Brain, and Education, 5(3), 121–127. https://doi.org/10.1111/j.1751-228X.2011.01120.x
LoBue, V., & DeLoache, J. S. (2008). Detecting the Snake in the Grass: Attention to Fear-Relevant Stimuli by Adults and Young Children. Psychological Science, 19(3), 284–289. https://doi.org/10.1111/j.1467-9280.2008.02081.x
Loftus, G. R. (1993). A picture is worth a thousand p values: On the irrelevance of hypothesis testing in the microcomputer age. Behavior Research Methods, Instruments, & Computers, 25(2), 250–256. https://doi.org/10.3758/BF03204506
Lord, F. M. (1967). A paradox in the interpretation of group comparisons. Psychological Bulletin, 68(5), 304.
Marcus-Roberts, H. M., & Roberts, F. S. (1987). Meaningless Statistics. Journal of Educational Statistics, 12(4), 383–394. https://doi.org/10.3102/10769986012004383
Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83(1), 33–54. https://doi.org/10.1002/(SICI)1098-237X(199901)83:1<33::AID-SCE2>3.0.CO;2-Z
Maxwell, A. E. (1970). Comparing the Classification of Subjects by Two Independent Judges. The British Journal of Psychiatry, 116(535), 651–655. https://doi.org/10.1192/bjp.116.535.651
Mazza, R. (2009). Introduction to information visualization. New York: Springer.
McCarthy, M. S., & Mothersbaugh, D. L. (2002). Effects of typographic factors in advertising-based persuasion: A general model and initial empirical tests. Psychology & Marketing, 19(7–8), 663–691. https://doi.org/10.1002/mar.10030
McLean, S. A., Paxton, S. J., Wertheim, E. H., & Masters, J. (2015). Photoshopping the selfie: Self photo editing and photo investment are associated with body dissatisfaction in adolescent girls. International Journal of Eating Disorders, 48(8), 1132–1140. https://doi.org/10.1002/eat.22449
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157. https://doi.org/10.1007/BF02295996
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004–1023. https://doi.org/10.1016/j.neubiorev.2009.04.001
Neyman, J., & Pearson, E. S. (1928). On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference: Part I. Biometrika, 20A(1/2), 175–240. https://doi.org/10.2307/2331945
Neyman, Jerzy, & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, 231(694–706), 289–337. https://doi.org/10.1098/rsta.1933.0009
Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241–301.
Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books.
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632. https://doi.org/10.1007/s10459-010-9222-y
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
Paivio, A. (1986). Mental Representations: A Dual Coding Approach. New York: Oxford University Press.
Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review, 1(1), 29–55. https://doi.org/10.3758/BF03200760
Panik, M. (2005). Advanced Statistics from an Elementary Point of View. Amsterdam: Elsevier Academic Press.
Popper, K. (2002). The Logic of Scientific Discovery. London and New York: Routledge.
Prensky, M. (2001). Digital Natives, Digital Immigrants Part 1. On the Horizon, 9(5), 1–6. https://doi.org/10.1108/10748120110424816
Puente, A. E. (2012). Roger W. Sperry: From Neuro-Science to Neuro-Philosophy. In A. Y. Stringer, E. L. Cooley, & A.-L. Christensen (Eds.), Pathways to Prominence in Neuropsychology: Reflections of Twentieth-Century Pioneers (pp. 63–76). New York: Psychology Press.
Quinn, G. E., Shin, C. H., Maguire, M. G., & Stone, R. A. (1999). Myopia and ambient lighting at night. Nature, 399(6732), 113. https://doi.org/10.1038/20094
Reed, S. K. (2013). Thinking Visually. New York: Psychology Press.
Reinhart, A. (2015). Statistics Done Wrong: The Woefully Complete Guide. San Francisco: No Starch Press.
Robertson, P. K. (1991). A methodology for choosing data representations. Computer Graphics and Applications, IEEE, 11(3), 56–67.
Robinson, W. S. (2009). Ecological Correlations and the Behavior of Individuals. International Journal of Epidemiology, 38(2), 337–341. https://doi.org/10.1093/ije/dyn357
Rugg, G. (2007). Using Statistics: A Gentle Introduction. McGraw-Hill Education.
Ryan, L. (2016). Visual communication and literacy. In The visual imperative (pp. 109–130). https://doi.org/10.1016/B978-0-12-803844-4.00006-6
Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth century. New York: W. H. Freeman and Company.
Sharpe, D., & Poets, S. (2017). Canadian psychology department participant pools: Closing for the season? Canadian Psychology/Psychologie Canadienne, 58(2), 168–177. https://doi.org/10.1037/cap0000090
Shen, W., Kiger, T. B., Davies, S. E., Rasch, R. L., Simon, K. M., & Ones, D. S. (2011). Samples in applied psychology: Over a decade of research in review. The Journal of Applied Psychology, 96(5), 1055–1064. https://doi.org/10.1037/a0023322
Sherman, R. C., Buddie, A. M., Dragan, K. L., End, C. M., & Finney, L. J. (1999). Twenty Years of PSPB: Trends in Content, Design, and Analysis. Personality and Social Psychology Bulletin, 25(2), 177–187. https://doi.org/10.1177/0146167299025002004
Simpson, E. H. (1951). The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society: Series B (Methodological), 13(2), 238–241. https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
Singh, M., & Hoffman, D. D. (2013). Natural Selection and Shape Perception. In Advances in Computer Vision and Pattern Recognition. Shape Perception in Human and Computer Vision (pp. 171–185). https://doi.org/10.1007/978-1-4471-5195-1_12
Smart, R. G. (1966). Subject selection bias in psychological research. Canadian Psychologist/Psychologie Canadienne, 7a(2), 115–121. https://doi.org/10.1037/h0083096
Sotelo, M. M., & Johnson, S. R. (1997). The effects of hormone replacement therapy on coronary heart disease. Endocrinology and Metabolism Clinics of North America, 26(2), 313–328. https://doi.org/10.1016/S0889-8529(05)70249-8
Sperry, R. W. (1973). Lateral specialization of cerebral function in the surgically separated hemispheres. In F. J. McGuigan & R. A. Schoonover, The psychophisiology of thinking: Studies of covert processes. New York: Academic Press.
St. Clair, S. (2000). Visual Metaphor, Cultural Knowledge, and the New Rhetoric. In J. Reyhner, J. Martin, L. Lockard, & W. Sakiestewa Gilbert (Eds.), Learn In Beauty: Indigenous Education for a New Century. Retrieved from https://eric.ed.gov/?id=ED445871
Stafford, B. M. (1998). Good Looking: Essays on the Virtue of Images. Cambridge, MA: MIT Press.
Standing, L. (1973). Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222. https://doi.org/10.1080/14640747308400340
Stanfield, R. A., & Zwaan, R. A. (2001). The Effect of Implied Orientation Derived from Verbal Context on Picture Recognition. Psychological Science, 12(2), 153–156. https://doi.org/10.1111/1467-9280.00326
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651
Stuart, A. (1955). A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification. Biometrika, 42(3/4), 412–416. https://doi.org/10.2307/2333387
Student. (1908). The Probable Error of a Mean. Biometrika, 6(1), 1–25. https://doi.org/10.2307/2331554
Tabachnick, B. G., & Fidell, L. S. (2014). Using Multivariate Statistics. Retrieved from https://scholar.google.com/scholar?hl=sr&as_sdt=0%2C5&authuser=1&q=Using+Multivariate+Statistics&btnG=
Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews Neuroscience, 4(1), 37–48. https://doi.org/10.1038/nrn1009
Treisman, A. (1986). Preattentive Processing in Vision. In A. Rosenfeld (Ed.), Human and Machine Vision II (pp. 313–334). https://doi.org/10.1016/B978-0-12-597345-8.50017-0
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15.
Trumbo, J. (1999). Visual literacy and science communication. Science Communication, 20(4), 409–425. https://doi.org/10.1177/1075547099020004004
Tufte, E. R. (1985). The visual display of quantitative information. Cheshire: Graphics Press.
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
Unwin, A., Chen, C., & Härdle, W. K. (2008). Introduction. In Chun-houh Chen, W. K. Härdle, & A. Unwin (Eds.), Handbook of data visualization (pp. 3–12). Berlin: Springer.
Ware, C. (2004). Information Visualization: Perception for design. San Francisco: Morgan Kaufmann.
Weiser, M. (1999). The computer for the 21st century. Mobile Computing and Communications Review, 3(3), 3–11.
Westergaard, G. C., Suomi, S. J., Chavanne, T. J., Houser, L., Hurley, A., Cleveland, A., … Higley, J. D. (2003). Physiological Correlates of Aggression and Impulsivity in Free-Ranging Female Primates. Neuropsychopharmacology, 28(6), 1045. https://doi.org/10.1038/sj.npp.1300171
Wildgen, W. (2004). The Paleolithic Origins of Art, its Dynamic and Topological Aspects, and the Transition to Writing. In M. Bax, B. van Heusden, & W. Wildgen (Eds.), Semiotic Evolution and the Dynamics of Culture (pp. 117–153). Bern: Peter Lang.
Zhang, J. (2010). Visualization for information retrieval. Berlin: Springer.